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On the planar hexagonal lattice H, we analyze the Markov process whose state
s(t), in { − 1, +1}H, updates each site v asynchronously in continuous time
t \ 0, so that sv(t) agrees with a majority of its (three) neighbors. The initial
sv(0)’s are i.i.d. with P[sv(0)=+1]=p ¥ [0, 1]. We study, both rigorously and
by Monte Carlo simulation, the existence and nature of the percolation transi-
tion as t Q . and p Q 1/2. Denoting by q+(t, p) the expected size of the plus
cluster containing the origin, we (1) prove that q+(., 1/2)=. and (2) study
numerically critical exponents associated with the divergence of q+(., p) as
p ‘ 1/2. A detailed finite-size scaling analysis suggests that the exponents c and n

of this t=. (dependent) percolation model have the same values, 4/3 and
43/18, as standard two-dimensional independent percolation. We also present
numerical evidence that the rate at which s(t) Q s(.) as t Q . is exponential.

KEY WORDS: Glauber dynamics; dependent percolation; Ising spin dynamics;
hexagonal lattice; critical exponents.

1. INTRODUCTION

Stochastic Ising models, a special class of interacting particle systems, are
Markov processes s(t) with state space S — { − 1, +1}L where L is some
regular lattice. They have been much studied in both the statistical physics
and probability theory literature (see, e.g., refs. 1 and 2). Their physical
and mathematical significance is tied to the fact that their transition
probabilities/rates are chosen so that the Gibbs measures (for some
Hamiltonian) at temperature T are invariant distributions for the Markov



process. In systems where there are multiple (infinite-volume) Gibbs mea-
sures for T below some critical Tc, a subject of considerable interest is the
t Q . behavior of s(t) (with temperature T=T1 < Tc) when the initial state
is chosen from the (unique) Gibbs measure at T=T2 > Tc. In this paper, we
study a continuous time stochastic Ising model with L the planar hexagonal
lattice H and, as in much of the statistical physics literature (see, e.g., ref. 1),
we focus on the limiting case where T1=0 and T2=.. (Some interesting
results for a natural discrete time process on H may be found in ref. 3.)

Our T1=0 continuous time process s(t) for t \ 0, related to the
Hamiltonian for the homogeneous ferromagnetic Ising model on H, may
be defined in terms of rate-one Poisson processes (independent for different
vertices v)—which we think of as rings of Poisson ‘‘clocks.’’ When the
clock at v rings at time tg > 0, the spin sv(tg) flips (i.e., sv(tg+)=−sv(tg))
if and only if sv(tg) agrees with a minority (here, at most one) of its three
neighboring spins at time tg. The (T2=+.) initial distribution for s(0) —

(sv(0) : v ¥ H) corresponds to i.i.d. sv(0)’s; we allow for a bias parameter
p=P[sv(0)=+1] ¥ [0, 1].

We will denote by Pt, p, for t \ 0 and p ¥ [0, 1], the probability distri-
bution on S of s(t) in this Markov process; we denote by Et, p expectation
with respect to Pt, p. We note that Pt, p is also well defined for t=., since,
as a corollary of a general theorem of Nanda et al., (4) almost surely each
spin sv flips only finitely many times, thereby ensuring the existence of the
t Q . limiting configuration s(.); P., p is then the distribution of this
s(.).

In this paper, we study the site percolation properties of (say) the +1
sites. Unless otherwise explicitly stated, all critical probabilities refer to site
percolation on H of s(t). Let C+

v denote the plus cluster of site v ¥ H, let 0
denote some specified ‘‘origin’’ site in H, and let h(t, p)=Pt, p[|C+

v |=.]=
Pt, p[|C+

0 |=.], where | · | denotes cardinality, and q+(t, p)=Et, p[|C+
v |]=

Et, p[|C+
0 |]. We define the critical probability as pc(t) — inf{p : q+(t, p)=.}.

This definition is reasonable since each sv(t) is stochastically increasing in
the time 0-spin configuration and hence, for any fixed t, q+ is increasing
in p. Of course, for t=0, P0, p is simply a product measure describing inde-
pendent site percolation on H, where pc(0)( % 0.7) > 1/2 [ref. 5, p. 275];
thus q+(0, p) < . and h(0, p)=0 (i.e., there is no percolation) if p < pc(0).
For t > 0, Pt, p describes a dependent percolation process for which relatively
little is known. The purpose of this paper is to provide some evidence, both
rigorous and numerical, about the existence and nature of a percolation
transition at t=., p=1/2.

It is rather easy to show (we leave it as an exercise) that for p < pc(0)
and then small t (how small depends on p), the system is subcritical in that,
e.g., q+(t, p) < .. It is also known (see refs. 3 and 6, where this is shown,
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respectively for L=H and L=Z2, by combining old results of Harris (7) and
of Gandolfi et al. (8)) that there is no percolation for p=1/2 for any t,
including t=.; i.e., h(t, 1/2)=0 for any t ¥ [0, .]. The main rigorous
result of this paper, presented in Section 2, is a proof that q+(., 1/2)=.;
we conjecture that q+(t, 1/2) < . for any t < . which would imply the
existence of a percolation transition as t Q . at p=1/2.

We also conjecture that at t=., q+(., p) < . for p < 1/2 so that the
t=., p=1/2 critical point would exhibit a transition from another direc-
tion in the (t, p) plane. This conjecture will be supported by numerical
evidence concerning the nature of the divergence of q+(., p) as p ‘ 1/2.
Indeed, a major part of this paper will be a detailed analysis, presented in
Section 3, of simulation data about two critical exponents, c and n, asso-
ciated with this divergence. Our conclusion is that c=4/3 and n=43/18,
the well known values for two-dimensional independent percolation (9–11)

(for other references, see ref. 12, p. 279).

2. INFINITE EXPECTED CLUSTER SIZE AT t=., p=1/2

We represent H as a graph embedded in R2 with vertex set V=
1i, j ¥ Z (V0+iu+jv), where

V0=31 `3
2

,
1
2
2, (0, 1), 1−

`3
2

,
1
2
2, 1 −`3

2
,

−1
2
2, (0, −1), 1 `3

2
,

−1
2
24,

(1)

u=(`3, 0) and v=(`3
2 , 3

2). The edge set E consists of all pairs of vertices
{u, v} from V with the Euclidean distance ||u − v|| from u to v equal to 1;
we identify the segment uv with the edge {u, v}.

A cell of H will mean any of the closed subsets of R2 whose boundary
consists of six consecutive edges of H obtained by always turning, say,
clockwise. If H is any finite collection of cells and R — 1C ¥ H C is simply
connected, we let “R denote the Jordan curve that is R’s boundary in R2.
For vertices a and b on “R, “

b
aR denotes the portion of “R going clockwise

from a to b. If A and B are subsets of “R, a crosscut in R from A to B is a
path p from some vertex in A to some vertex in B along the edges in H 5 R
with the property that all the vertices along p have a common spin. If s is
any spin configuration on H and v is any vertex of H, Cv=Cv(s) will
denote the set of vertices in the s(v)-spin cluster at v. We also put
Xv=Xv(s) — |Cv(s)|.

Theorem 1. Fix H and R as above with R simply connected.
Suppose s is a metastable spin configuration on H. If distinct vertices
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u, v, w, x ¥ “R are listed in clockwise direction around “R then either:
(1) there is a crosscut in R from “

v
uR to “

x
wR; or, (2) there is a crosscut in R

from “
w
v R to “

u
xR.

Proof. This can be proved directly on the lattice H, but the argu-
ment (as in an early draft of this paper) is somewhat lengthy and, as
pointed out to us by F. Camia, there is a simpler proof based on the parti-
tion of H into two sublattices, by A and B, such that all neighbors in H

of vertices of A belong to B and vice-versa. The set A (and similarly the
set B) is then turned into a graph by declaring two vertices of A to be
neighbors if they have a common H-neighbor vertex in B. (We remark
that although the term sublattice is in common usage in the statistical
mechanics literature, these are not subgraphs of the original graph H since
the edges in A and B are not edges in H.)

Each of A and B is a triangular lattice, with each vertex having
exactly six neighbors. Furthermore (and unlike on the lattice H), if a finite
subset D of a triangular lattice has no holes (i.e., the complement Dc of D
consists of only a single infinite connected component), then “

gD, defined
as the set of vertices in Dc that are neighbors of some vertex in D, is also
connected. Next note that the vertices in “R alternate between A and B

and that each of the four pieces of “R (which overlap at their endpoints)
must contain at least one site of A (or else two of the vertices u, v, w, x
coincide and the conclusion of the theorem is trivial).

Consider the subgraph G of A consisting of all the vertices in R 5 A

(along with the edges between them). It is a standard fact about site perco-
lation on the triangular lattice that there is either a plus-spin path in G
from G 5 “

v
uR to G 5 “

x
wR or else a minus-spin path from G 5 “

w
v R to

G 5 “
u
xR. (To see this, let D be the union of the plus-clusters in G of those

vertices in G 5 “
v
uR; if this does not touch G 5 “

x
wR, then the plus-cluster of

“
gD 5 G will be connected and touch both G 5 “

w
v R and G 5 “

u
xR so that it

will contain the needed plus-path.)
The final step of the argument is to note that a (self-avoiding) constant-

spin path in A from a metastable spin configuration on H contains a sub-
path (with the original two endpoints from A) so that the interpolating
vertices from B are all distinct and furthermore have that same spin value.
Thus one obtains a (self-avoiding) constant-spin path in H between the
original endpoints. L

Regarding expected cluster size, we have the following consequence of
Theorem 1.

Theorem 2. Let m be any measure on spin configurations on H that
is concentrated on metastable configurations and is invariant with respect to
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all translations of H. Then EmX0=.. In particular, if m is the distribution
of s(.) corresponding to any p \ 0.5, then EX+

0 =..

Proof. This theorem follows from the proof of Theorem 1 combined
with a result of Russo [ref. 13, Prop. 1] applied to the triangular sublattice
A or B of H. A direct proof along the same lines as in ref. 13 is as follows.
Take the R of Theorem 1 to be Ra, the union of the cells contained in an
a × a square of R2 (with a large) and let the u, v, w, x of Theorem 1 be near
the four corners of the square. For each z ¥ “Ra, let Az denote the event
that there is a crosscut from z to (near) the opposite edge of the square, so
that for some c > 0 and a large, Xz \ ca if Az occurs. By Theorem 1 and
translation invariance, for some b < .,

bam[X0 \ ca] \ C
z ¥ “Ra

m[Az] \ m 5 0
z ¥ “Ra

Az
6=1. (2)

So for some d > 0, it follows that m[X0 \ n] \ d/n for n \ 1 and

Em[X0] \ C
.

n=1
m[X0 \ n] \ C

.

n=1
d/n=.. L (3)

3. SIMULATION METHODOLOGY AND MAIN RESULTS

For any positive integer L, define the vertex set V(L) by

V(L) — 0
0 [ i, j < L

(V0+iu+jv), (4)

with u and v as given in the previous section of the paper. For various
values of L, we numerically estimate several statistical properties of the
process on finite lattice patches Vg(L), which are simply the V(L) with
periodic boundary conditions. To implement the boundary conditions,
Vg(L) is V(L) with sites v along the lower edge of the patch (see Fig. 1(a))
identified with sites v+Lv and sites u along the left edge identified with
sites u+Lu. Specifically, let Vg(L) denote V(L) with the vertices on the
upper and rightmost ‘‘boundaries’’ deleted, so that Vg(L) eliminates the
duplication in V(L) caused by identified sites. In Fig. 1(a), for example,
where L=8, the sites v, vŒ and vœ are all identified. The vertex set Vg(8) is
represented by the •’s. Let Hg(L) denote the subgraph of H generated by
the vertex set Vg(L), together with additional edges {u, v} where (1)
u, v ¥ Vg(L), and (2) for some vŒ ¥ V, vŒ is identified with v and {u, vŒ} ¥ E.
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Fig. 1. (a) The finite lattice patch Vg(8), (b) an initial configuration on Vg(8), and (c) a possible
resulting metastable configuration.

In addition to varying L, we also vary the parameter p that measures
the (mean) density of +1 spins in the time 0 configuration This config-
uration, (sv(0): v ¥ Vg(L)), comprises i.i.d. ± 1-valued random variables
satisfying P[sv(0)=+1]=p. Figure 1(b) shows an illustrative time 0 con-
figuration on Vg(8).

To implement the dynamics, we randomly (i.e., uniformly, with repla-
cement) select a sequence of sites from Vg(L). This sequencing varies from
simulation to simulation and is independent of the sv(0)’s. When a site is
selected, its spin is altered, if necessary, to come into agreement with a
majority of its three neighbors. This proceeds until achieving a ‘‘meta-
stable’’ configuration (sv(.): v ¥ Hg(L)), characterized by the fact that it is
stable under the dynamics. Figure 1(c) shows a metastable configuration
that corresponds to some realization of the dynamics applied to the
configuration in Fig. 1(b).

When measuring the statistical properties corresponding to a given
pair (p, L), we typically ran a large number of independent simulations.
The time 0 spin configurations and the dynamics are constructed to be
independent across all combinations of (p, L). For example, changing
either one of p or L results in a completely independent simulated process. As
stated above, the dynamics are independent of the time 0 configurations.

Phase Transition, Part 1. Here we numerically identify the value of
pc(.) and the values of various critical exponents associated with this
phase transition. In particular, the critical exponent c(t) is defined by the
(infinite-volume) relation q+(t, p) ’ (pc(t) − p)−c(t) as p ‘ pc(t). Similarly,
n(t) denotes the correlation length exponent of the system at time t.
(The correlation length t+=t+(t, p) may be defined by Pt, p[v ¥ C+

u ] ’

exp(−||u − v||/t+) as ||u − v|| Q . and then n(t) is defined by t+(t, p) ’

(pc(t) − p)−n(t) as p ‘ pc(t).) At t=0, pc(0) % 0.7, and the critical exponents
should have the usual two-dimensional values of c(0)=43/18 and
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n(0)=4/3 (although these are not yet completely rigorous). As we shall
see, it turns out that pc(.)=1/2, but the critical exponents continue to
have the usual values: c(.)=43/18 and n(.)=4/3. In this Part 1,
however, we treat pc(.) and the two exponent values as unknown quanti-
ties that we are trying to estimate. Although our approach in Part 1 is to
estimate pc(.), c(.), and n(.) simultaneously, other approaches, where
pc(.) is estimated first, are possible—see, e.g., ref. 14. In Part 2, we will
statistically test the hypothesis that 1/2, 43/18, and 4/3 are indeed the
correct values.

Our basic approach is to study the behavior of +1 cluster sizes on
finite lattice patches. To compute average +1 cluster size, we ran simula-
tions for various values of L and p. For v ¥ Vg(L), let X+

v (p, L, n) denote
the size of the +1 cluster (in Vg(L)) at v at time . (i.e., in the terminal
metastable state) for the nth simulation, so X+

v (p, L, · )=0 if sv(.)=−1
for that simulation. We computed the average cluster size for the nth
simulation as

X̄+(p, L, n)=
1

|Vg(L)|
C

v ¥ V
g(L)

X+
v (p, L, n)=

1
|Vg(L)|

C
+1 clusters C

|C|2. (5)

For Fig. 1(c), this calculation yields

X̄+=
1

128
(62+382)=11.5625. (6)

(Note that in Fig. 1(c) there are only two +1 clusters, rather than the
apparent four, because of the vertex identifications.) For each of many
values of p and L, we ran 10,000 such simulations. We then estimated the
expected cluster size for the finite system as

EX̄+(p, L) % X̂+(p, L) —
1

10,000
C
n

X̄+(p, L, n), (7)

and further estimated the standard deviation, s(p, L), of the X̂+ estimator
as

s(p, L) — Std(X̂+(p, L)) % ŝ(p, L)

—
1

10,000
`C

n
(X̄+(p, L, n) − X̂+(p, L))2. (8)
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Fig. 2. log10(X̂+(p, L)) for (1) L=200, (2) L=400, (3) L=600, and (4) L=800.

We did this exercise for various values of p and for L=200, 400, 600,
and 800. The results for X̂+(p, L) are plotted in Fig. 2 and shown in
tabular form along with their respective standard deviations in the
Appendix.

We analyzed this data using finite-size scaling methods. Throughout
the following we abbreviate pg

c =pc(.), cg=c(.), and ng=n(.), repre-
senting the true values of the respective quantities. Symbols pc, c, and n will
represent ‘‘test’’ values of these quantities. According to the finite-size
scaling ansatz, see, e.g., refs. 15–17, we should have, for c=cg, n=ng,
d=dg (the exponent for the order of magnitude of the scaling error), and
p(s)=pc+sL−1/n, that

EX̄+(p(s), L)=Lc/n[fg(s)+L−dgg(s)+higher order terms] (9)

for some functions fg and gg that are independent of L. Of course, we do
not know the quantities EX̄+(p, L) or s(p, L), but rather have respectively
the estimates X̂+(p, L) and ŝ(p, L) for 21 values of p. With a sample
size of 10,000, X̂+(p, L)/ŝ(p, L) should be approximately normal with
variance one. For any numbers pc, c, n, d, and any functions f and g, error
terms E(pc, c, n, d, f, g; s, L) may be defined by the relation:

X̂+(p(s), L)
ŝ(p(s), L)

=
Lc/n

ŝ(p(s), L)
f(s)+

L (c/n) − d

ŝ(p(s), L)
g(s)+E(pc, c, n, d, f, g ; s, L).

(10)

Our model is that, for the correct pc, c, n, d, f, and g, the error term
E(pc, c, n, d, f, g ; s, L) should be approximately a standard normal.
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To estimate these four numerical quantities and two functions we
would like to numerically search through pc, c, n, d, f and g with the
objective of minimizing the sum

C
s ¥ S

C
L

E(pc, c, n, d, f, g ; s, L)2, (11)

where L=200, 400, 600, and 800, and where s ranges over a fixed appro-
priate collection of values S. A difficulty that arises here is that the values
{p(s): s ¥ S} depend on the value of pc and n (and on L, but this is not a
difficulty). This is problematic because, for each of the four values of L,
we have necessarily computed X̂+(p, L) and ŝ(p, L) only for a limited
number (i.e., 21) of values of p which are generally not those in {p(s): s ¥ S}
(refer to (10)). (The values of p used, pL

i for 0 [ i [ 20, depend on L—
see Appendix.) To solve this, we fit polynomials, two for each value of L,
to the 21 data points corresponding to X̂+ and ŝ, i.e., to the points
(pL

i , X̂+(pL
i , L))0 [ i [ 20 and (pL

i , ŝ(pL
i , L))0 [ i [ 20. (These polynomials,

essentially degree 11 least square fits, were arrived at through a combina-
tion of subjective and quantitative criteria—see Appendix.) We denote
these polynomials, respectively, by X̃+(p, L) and s̃(p, L) (for each of the
four L’s, these are polynomial in p). The polynomials X̃+(p, 200) and
s̃(p, 200) are plotted in Fig. 3.

Replacing X̂+ with X̃+ and ŝ with s̃ in (10), and defining the Ẽ ’s again
to produce equality, we obtain

X̃+(p(s), L)
s̃(p(s), L)

=
Lc/n

s̃(p(s), L)
f(s)+

L (c/n) − d

s̃(p(s), L)
g(s)+Ẽ(pc, c, n, d, f, g ; s, L).

(12)

Fig. 3. X̃+(p, 200) (scale on right axis) and s̃(p, 200) (scale on left axis). Bars show 99%
confidence intervals for EX̄+(p, 200) and s(p, 200), based on the data.
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Fig. 4. f|S (scale on left axis) and g|S (scale on right axis).

For L=200, 400, 600, and 800, and s ranging from − 1.5 to 1.5 in
steps of 0.1 (i.e., with S={ − 1.5, −1.4,..., +1.4, +1.5}), we numerically
searched a fine grid of values for pc, c, n, and d and, given these quantities,
used standard quadratic minimization techniques to find f|S and g|S with
the objective of minimizing the quantity

C
s ¥ S

C
L

Ẽ(pc, c, n, d, f|S, g|S ; s, L)2. (13)

To three decimal places, the minimum value occurred with the following
estimates of the true parameters: p̂c=0.500, ĉ=2.392, n̂=1.336, and
d̂=0.946. Figure 4 displays the corresponding values of f(s) and g(s) for
s ¥ S.

We note that these results are not excessively sensitive to the degree, in
this case 11, of the fitting polynomials. Table I reports the analogous esti-
mates over a range of degrees (in each case we held pc constant at 0.5 but
allowed c, n, d, f|S, and g|S to optimize).

Table I. Minimizing Exponents Corresponding to

Five Different Polynomial Fits of the Data

Polynomial
degree ĉ n̂ d̂

9 2.390 1.335 0.952
10 2.390 1.335 0.945
11 2.392 1.336 0.946
12 2.390 1.335 0.949
13 2.380 1.330 0.959
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Phase Transition, Part 2. Based on the results of Part 1, we statis-
tically test the hypothesis that pg

c =1/2, cg=43/18, ng=4/3, and dg=1.
To this end we ran a new, independent, set of data. This time we simulated
the systems corresponding to values of L ranging from 200 to 800 in steps
of 25 and for s taking on the values − 1, 0, and +1 (or, equivalently for
each L, for p taking on values 1

2 − L−3/4, 1
2 , 1

2+L−3/4) for a total of 75 (s, L)
pairs. The motivation for shifting from few values of L and many values of
p (as in Part 1) to many values of L and few values of s (few values of p for
each L) is that each value of s reduces the degrees of freedom by 2 since
f(s) and g(s) are estimated parameters. This shift allows us 75 − 2 × 3=69
degrees of freedom. Note that in Part 1, we needed good estimates of
EX̄+(p, L) for many values of p because, for each L, the values of p
corresponding to each s varied with pc and n—free parameters in Part 1.

With the exponents fixed, we used standard minimization techniques
as before to find f(s) and g(s), for s=−1, 0, 1, that minimizes the sum

C
s ¥ { − 1, 0, 1}

C
L

E(f(s), g(s) ; s, L)2, (14)

where the error terms are defined by the relation:

X̂+
2 (s, L)

ŝ2(s, L)
=

L43/24

ŝ2(s, L)
f(s)+

L19/24

ŝ2(s, L)
g(s)+E(f(s), g(s); s, L). (15)

The values of X̂+
2 (s, L) and ŝ2(s, L), i.e., the second data set, are tabulated

in the appendix. As in Part 1, the data are independent across the 75 dif-
ferent (s, L) pairs.

First, we use the chi-square goodness-of-fit test to test for standard
normality of the errors E as defined in (15). We divide the line into the
standard normal deciles, i.e., define − .=x0 < x1 < · · · < x9 < x10=. by
P[xi − 1 < standard normal [ xi]=1/10. We let Qi denote the number of
pairs (s, L) with xi − 1 < E(s, L) [ xi (for 1 [ i [ 10), so we will have that

C — C
10

i=1

(Qi − 7.5)2

7.5
(16)

is drawn (roughly) from a chi-square distribution with 9 degrees of
freedom. For our particular data, we have C=6.733, with corresponding
P-value P[q2(9) \ 6.733]=0.68 indicating a good fit by this test.

The sample mean of the 75 errors was Ē=−0.002, with sample
variance S2

E =0.847. Neither of these quantities would lead to the rejection
of the hypotheses of standard normality of the errors with any reasonable
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level of significance. Additionally, assuming the model and exponent values
are correct, the value of the sum in (14) should be distributed like q2(69).
The data yielded 63.5, which is within one standard deviation of the
expected value of 69.

4. SIMULATION RESULTS ON RATE OF FIXATION

In this section we study numerically the rate at which s(t) Q s(.) as
t Q . when p=1/2. Based on preliminary numerical evidence (reported in
ref. 18) and on heuristic arguments, this rate was postulated in ref. 19 to be
exponential. For p sufficiently close to zero or one, exponential fixation
was proved on the homogeneous tree of degree three in ref. 18, and (at
least) stretched-exponentially fast fixation was proved on Zd in ref. 20 and
on H in ref. 3.

Specifically, we simulate the Markov process on the patch V(40) and
study when a specified site in this patch flips for the last time. Our specified
site is v0 — (−`3

2 , −1
2)+20u+20v, which is located essentially in the middle

of the patch. Here we explicitly do not use periodic boundary conditions.
Letting “V(40) denote those sites in V(40) at graphical distance either 1 or
2 from some site in V(40)c, for each simulation we run two cases: (1) where
sv(t)=+1 for all t and all v ¥ “V(40) and (2) where sv(t)=−1 for all t
and all v ¥ “V(40). For each simulation, in cases (1) and (2) the spin values
at time zero in the interior, (sv(0): v ¥ V(40)0“V(40)), are i.i.d. with
P[sv(0)=+1]=P[sv(0)=−1]=1/2. Also, for each simulation, in cases
(1) and (2) the dynamics are identical in the sense that the order in which
sites are (randomly) selected for possible spin flips is the same. In each of
the 3 million simulations performed, the case (1) and case (2) values of
sv0

(t) agreed for all t, indicating that we effectively sampled from the
infinite system.

Recall that in implementing the dynamics, we randomly (with repla-
cement) select sites in V(40) for possible spin flips, simulating the ringing
of Poisson clocks. The statistic that this yields is the number N of clock
rings on the patch V(40) until v0 last flips. To convert this into a time with
the proper distribution, we compute T=;N

n=1 Yn, where the Yn are
independent exponential random variables of mean 1/|V(40)|.

Figure 5 shows a (logarithmic) plot of the empirical estimate Ft of the
tail, P[T > t], for the time T until last flip of v0. The tail appears to fall off
exponentially fast. In fact, a least squares fit of log P[T > t] of the form
a − btc produces minimal fitting error over the data interval 5 [ t [ 25
when, to two decimal places, c=1.01. Figure 5 shows this fit.
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Fig. 5. Distribution of the time until site v0 last flips, based on 3 × 106 simulations. Bullets •
show log10(Ft), where Ft is the fraction of simulations where the time of last flip at site v0

exceeds t. Plot shows best linear fit of data for 5 [ t [ 25.

APPENDIX A

A.1. Data for Phase Transition Part 1

The data for Phase Transition Part 1 is shown in Table II.

A.2. Polynomial Fitting of Data

The polynomials X̃+(p, L) of Section 3 are computed as follows.
Recall that ŝ(p, L) is (an estimate of ) the standard deviation of the esti-
mator X̂+(p, L). Then X̃+(p, L) is the degree 11 polynomial P(p) that
minimizes the quantity,

C
p

5P(p) − X̂+(p, L)
ŝ(p, L)

62

, (17)

where p ranges over the 21 values shown above corresponding to the par-
ticular L. The choice of degree 11 was based on subjective criteria.

The polynomials s̃(p, L) are computed slightly differently. Let Q̃(p)
be the degree 11 polynomial Q(p) that minimizes the quantity,

C
p

5Q(p) − ŝ1/2(p, L)
ŝ1/2(p, L)

62

; (18)

then take s̃(p, L)=Q̃(p)2. The decision to initially fit ŝ1/2(p, L), rather
than fit ŝ(p, L) directly, was again based on subjective criteria.
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Table II. Data Is Based on 10000 Simulations for Each (p, L) Pair

p X̂+(p, L) ŝ(p, L) p X̂+(p, L) ŝ(p, L)

L=200 L=400

0.4660 383.9 1.561 0.4801 1437.5 6.064
0.4694 502.6 2.334 0.4821 1839.0 8.112
0.4728 667.9 3.482 0.4841 2460.3 13.234
0.4762 923.2 5.497 0.4861 3360.6 19.643
0.4796 1315.5 8.713 0.4880 4752.7 30.340
0.4830 1912.6 12.869 0.4900 6933.5 46.514
0.4864 2887.7 19.019 0.4920 10345.5 67.322
0.4898 4324.4 25.944 0.4940 15503.5 91.839
0.4932 6318.9 31.773 0.4960 22051.7 110.983
0.4966 8625.7 34.837 0.4980 30179.4 122.134
0.5000 11157.5 33.568 0.5000 38561.6 118.090
0.5034 13535.4 29.888 0.5020 46505.7 103.189
0.5068 15545.2 25.467 0.5040 53427.6 84.674
0.5102 17393.6 19.938 0.5060 59392.6 67.733
0.5136 18932.7 16.814 0.5080 64382.2 54.219
0.5170 20355.7 14.151 0.5100 68667.3 45.935
0.5204 21615.5 12.529 0.5120 72666.0 38.588
0.5238 22824.3 11.025 0.5139 76260.7 34.150
0.5272 23928.6 10.085 0.5159 79630.3 30.071
0.5306 25025.1 9.273 0.5179 82740.0 27.414
0.5340 26072.1 8.924 0.5199 85736.3 25.084

L=600 L=800

0.4854 3043.1 12.342 0.4883 5181.5 20.723
0.4869 3938.0 18.370 0.4895 6745.7 31.483
0.4883 5214.9 27.622 0.4906 8902.0 46.830
0.4898 7130.7 41.376 0.4918 12157.9 71.621
0.4912 10137.9 65.065 0.4930 17196.1 109.773
0.4927 14931.9 99.250 0.4942 24866.4 164.613
0.4942 22039.3 144.828 0.4953 36909.0 239.188
0.4956 32148.3 190.745 0.4965 54497.2 323.397
0.4971 46304.4 230.259 0.4977 77311.8 386.662
0.4985 62314.1 247.714 0.4988 104328.3 418.226
0.5000 80426.6 239.863 0.5000 133529.4 408.751
0.5015 95927.5 209.643 0.5012 160275.1 353.765
0.5029 110088.6 176.674 0.5023 183768.3 292.729
0.5044 121686.3 144.172 0.5035 203313.7 236.978
0.5058 132168.6 110.968 0.5047 219947.2 187.504
0.5073 140761.7 93.133 0.5058 234400.6 156.161
0.5088 148472.7 79.718 0.5070 247200.0 130.098
0.5102 155501.2 68.704 0.5082 258578.2 115.031
0.5117 162028.2 61.271 0.5094 269327.8 98.169
0.5131 168165.2 53.831 0.5105 278977.8 88.767
0.5146 173958.2 49.415 0.5117 288303.1 80.756
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Table III. Data Is Based on 17197 Simulations for Each (−1, L) and (0, L) Pair, and

14173 Simulations for Each (+1, L) Pair

s=−1 s=0 s=+1

L X̂+(s, L) ŝ(s, L) X̂+(s, L) ŝ(s, L) X̂+(s, L) ŝ(s, L)

200 1560.7 7.898 11097.7 25.973 21018.8 11.020
225 1948.3 9.951 13701.4 32.226 25839.2 13.339
250 2369.3 12.014 16591.4 38.868 31082.0 15.780
275 2793.7 14.107 19650.5 45.822 36738.4 18.744
300 3301.9 16.938 22954.3 53.430 42823.0 21.306
325 3772.3 18.809 26577.1 61.794 49327.9 24.335
350 4315.2 21.889 30336.8 70.921 56149.4 27.911
375 4950.8 24.938 34365.2 79.086 63458.7 31.885
400 5486.4 27.482 38652.3 88.809 71108.7 34.557
425 6144.8 30.335 42912.9 100.058 79184.4 38.645
450 6846.8 35.045 47647.5 110.802 87691.6 42.280
475 7459.4 36.827 52502.9 120.892 96425.0 47.108
500 8246.1 41.243 57742.7 131.947 105643.8 51.435
525 9022.9 44.396 62935.9 144.758 115055.4 55.918
550 9896.3 49.697 68113.1 157.782 124961.6 59.946
575 10666.7 53.644 73714.5 170.714 135329.2 65.212
600 11470.4 57.073 79882.0 184.482 146035.0 69.404
625 12448.3 62.874 85709.0 198.823 156839.7 75.573
650 13274.2 65.955 91887.1 213.929 168251.3 80.729
675 14234.0 72.213 98483.6 227.318 179879.7 86.758
700 15176.6 75.725 105012.8 241.510 191865.3 92.764
725 16092.2 80.443 111677.4 256.731 204087.2 98.596
750 17250.0 87.445 118916.6 273.585 216988.8 103.925
775 18171.5 90.896 126008.6 292.703 229813.8 110.130
800 19144.0 94.206 133041.9 309.130 243476.7 112.770

A.3. Data for Phase Transition Part 2

The data for Phase Transition Part 2 is shown in Table III.
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